首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   19篇
  国内免费   20篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   12篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   13篇
  2010年   10篇
  2009年   11篇
  2008年   23篇
  2007年   18篇
  2006年   39篇
  2005年   28篇
  2004年   13篇
  2003年   22篇
  2002年   20篇
  2001年   17篇
  2000年   23篇
  1999年   22篇
  1998年   24篇
  1997年   24篇
  1996年   26篇
  1995年   16篇
  1994年   13篇
  1993年   13篇
  1992年   17篇
  1991年   17篇
  1990年   12篇
  1989年   10篇
  1988年   17篇
  1987年   7篇
  1986年   10篇
  1985年   16篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   10篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有608条查询结果,搜索用时 15 毫秒
601.
Vegetable oil with elevated saturated fatty acid content may be useful for producing solid fat without hydrogenation or transesterification. Under the nutritional point of view stearic acid is preferred to other saturated fatty acids because of its neutral effect on serum cholesterol lipoproteins. Selection of a very high stearic acid sunflower (Helianthus annuus L.) line (CAS-14), with up to a 37.3% of stearic acid in the seed oil, and the relationship between the expression of this character and the growth temperature are presented. The mutant was selected from the M(2) progeny of 3000 mutagenized seeds (4 mM sodium azide mutagenesis treatment) by analysing the fatty acid composition of half-seed by gas liquid chromatography. In order to genetically fix the mutant character, plants were grown at high day/night temperatures during seed formation. We found that temperatures higher than 30/20 degrees C are required for good expression of the phenotype, the maximum stearic acid content being obtained at 39/24 degrees C. This behaviour is totally opposed to that observed in normal and previously isolated high-stearic acid sunflower lines that contain more stearic acid at low temperature. Thus, a new type of temperature regulation on the stearate desaturation must occur. This line is the sunflower mutant with the highest stearic acid content reported so far.  相似文献   
602.
Sunflower hypocotyl protoplasts ( Helianthus annuus L. cv. Emil) divide symmetrically to form loosely associated microcolonies when cultured in liquid medium, whereas when embedded in agarose beads they divide asymmetrically to give rise to embryo-like structures. To understand the relationship between protoplast embedding and cell division patterns, we studied the deposition of β-linked glucan and the dynamics of microtubules during early phases of culture. After one day in culture, under both culture conditions, a small proportion of the protoplasts had already begun to rebuild a β-glucan cell wall and the process reached completion in all protoplasts after 10 days. Callose deposition was faster in agarose than in liquid medium but it concerned only 30–40% of the protoplasts and was not related to either division type. No marked differences were observed in cortical arrays of microtubules. However, in embedded protoplasts perinuclear microtubules formed a well-defined basket around the nucleus; these microtubules were never observed in liquid-cultured protoplasts. A narrow preprophase band was present only in dividing protoplasts cultured in liquid medium. The results suggest that asymmetric division could be related to the lack of a narrow preprophase band and that protoplast embedding enhances nucleation or stabilization of microtubules.  相似文献   
603.
Polycyclic Aromatic Hydrocarbons (PAHs) are diverse organic contaminants released into the environment by both natural and anthropogenic activities. These compounds have negative impacts on plants growth and development. Although there are many reports on their existence in different parts of plant, their uptake and translocation pathways and mechanisms are not well understood yet. This paper highlights the uptake, translocation and accumulation of PAHs by wheat, sunflower and alfalfa through an experimental study under controlled conditions. Seeds were cultivated in a soil containing 50 mg/kg of phenanthrene and fluorene and their concentrations in plants roots and shoots were determined using a gas chromatograph after 7 and 14 days. The results showed that phenanthrene and fluorene concentrations in the treated plants were increased over the time. PAHs bioavailability was time and species dependent and generally, phenanthrene uptake and translocation was faster than that of fluorene, probably due to their higher Kow. Fluorene tended to accumulate in roots, but phenanthrene was transported to aerial parts of plants.  相似文献   
604.
605.
606.
Three-week-old sunflower plants ( Helianthus annuus L. cv. Halcón) grown in nutrient solution at two K+ levels (0.3 and 2.5 m M ) were used to study the effect of 4 μ M abscisic acid (ABA) on the transport of K+ (Rb+) and water to the exuding stream of decapitated plants. Other conditions of the bathing medium of the roots were also assayed, such as presence of 10 m M glucose, aeration and time of ABA application. In the first 2 or 3 h after ABA application, ABA always promoted water and ion fluxes, even under the most unfavorable conditions such as low K+ roots without glucose or under anaerobiosis. The ABA-promoting effect on ion and water flow was higher with glucose in the medium. Under anaerobiosis the ABA effect disappeared after 3 h. With glucose and aeration the ABA-promoting effect appeared early and continued for several hours, although the effect decreased with time. If ABA was applied 24 h before excision, the effect was small or even negative. We suggest that ABA acts directly on membranes of certain root cells (endodermal or both endodermal and cortical cells) by increasing their permeability and thus releasing ions. This will decrease cell turgor pressure and, indirectly, the hydraulic conductivity of the whole root. Under conditions of higher hydraulic conductivity, the presence of ions and glucose in the root stimulates the transport of ions into the xylem. and thus increases the osmotic water flow.  相似文献   
607.
Summary This paper describes the first purification method for crystalline inclusions (cores) from plant peroxisomes and an ultrastructural characterization of these isolated cores. 5-day-old sunflower (Helianthus annuus L.) cotyledon fractions which were highly enriched in cores showed negligible activity of the matrix enzyme glycolate oxidase but high catalase activity. As proven by electron microscopy, crystalline particles were surrounded neither by matrix material nor by membranes. Their geometrical outlines and ultrastructure were identical to those of cores in tissue sections, as was their reactivity with three different polyclonal catalase antibodies in the immunogold technique. Three-dimensional reconstruction, based on the geometrical outlines and ultrastructure of sectioned isolated cores from sunflower, suggested that they were quadrangular blocks. Ultrastructural analysis revealed an even periodic arrangement of repeating units which are probably cubes with 20 nm long edges. Isolated peroxisomal cores from potato (Solanum tuberosum L.) tubers had outlines which suggested that they were even rhomboidal prisms. They showed a granular ultrastructure without any repeating units and contained catalase, demonstrated by immunogold labelling and enzyme activity measurement. The results presented here suggested the hypothesis that the structural elements in plant peroxisomal cores are made of enzymatically active catalase, although the substructure may vary from species to species.Abbreviations ACOx acyl-CoA oxidase - BSA bovine serum albumin - EDTA ethylenediamine-tetraacetate - GDH glutamate dehydrogenase - GOx glycolate oxidase - KPB potassium phosphate buffer  相似文献   
608.
In-vivo experiments with developing sunflower (Helianthus annuus L.) seeds demonstrated that oleate desaturase activity was stimulated by low temperature (10 °C), repressed by high temperature (30 °C) and rapidly restored by returning the seeds to low temperature. Within time periods of 2–4 h, in which the de-novo fatty acid synthesis was negligible, the percentages of oleate (18:1) and linoleate (18:2) were modified in the seed lipids as a consequence of temperature adaptation. When the seeds were transferred to low temperature, the 18:2 content increased in all lipids from both microsomal membranes and oil bodies. After shifting to high temperature, the overall 18:2 content remained constant, but the 18:2 content decreased in diacylglycerols, phosphatidylcholine (PC) and other polar lipids of the two fractions and also in triacylglycerols (TAGs) of the microsomes but increased in TAGs of the oil bodies. The results indicate that the mechanism for the rapid adaptation of sunflower seeds to temperature changes involves (i) the synthesis or activation of oleate desaturase at low temperature and the reversible inhibition of this enzyme at high temperature and (ii) the exchange of 18:1 and 18:2 between TAGs and PC. Under both low and high temperature, 18:1 is transferred from reserve TAGs to PC and 18:2 is transferred from PC to reserve TAGs. At low temperature, 18:1 is desaturated to 18:2 thus allowing the enrichment of membrane lipids with 18:2, the excess being stored in reserve TAGs. At high temperature, however, and provided that oleate desaturase is repressed, the membrane lipids become enriched in 18:1 and the oil-body TAGs become enriched in 18:2. Received: 11 August 1997 / Accepted: 10 November 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号